The elements of statistical learning : data mining, inference, and prediction. (2nd ed.)

Loại tài liệu: Tài liệu số - Book

Tác giả: Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome

Nhà Xuất Bản: Springer

Năm Xuất Bản: 2001

(Tải app tại đây để đọc sách)

Tóm tắt

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book...

Ngôn ngữ:en
Tác Giả:Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome
Thông tin nhan đề:The elements of statistical learning : data mining, inference, and prediction. (2nd ed.)
Nhà Xuất Bản:Springer
Loại hình:Book
Mô tả vật lý:764 p.
Năm Xuất Bản:2001

(Sử dụng ứng dụng VNU- LIC quét QRCode này để mượn tài liệu)

(Lưu ý: Sử dụng ứng dụng Bookworm để xem đầy đủ tài liệu. Bạn đọc có thể tải Bookworm từ App Store hoặc Google play với từ khóa "VNU LIC”)